Nhà nghiên cứu Luis Caffarelli giành giải thưởng Toán học Abel
Nhà nghiên cứu người Mỹ gốc Argentina Luis Caffarelli đã trở thành chủ nhân của Giải thưởng Toán học Abel năm 2023 vì những đóng góp nổi trội cho lý thuyết về các phương trình đạo hàm riêng phi tuyến tính.
w7lH4buv4buxQkvhu7lSUsah4bur4bugaEhTS8SQ4bur4bulw6JHw4Hhu7FNRkdI4bq8TeG7sULGr1Thu7HhurNUSFLhu7F94bu54buE4buE4bu5UcSQS0tI4buxRkjDgU1H4buxRkjhuqBI4buxU0fFqOG7ok1G4buxaE5BTeG7sUfDkkLhu7Hhu7jhuqrEkEvDuS9H4buv4bulw7nhu6Dhu7FCS+G7uVJSxqHhu6vhu6B94bu54bugU0hOTeG7q+G7pcO5SExG4buxQkvhu7lSUsah4burQkxSLeG7oEdOU07hu7FDU0dUTOG6quG7sUh9xJBNU8SQUeG7q+G7sVJTWEvEkMah4burVkhDU0dw4buxw7124but4bugV3Hhu7FHxJBIRkdTcOG7sXjhu6954bugV3Hhu6vhu7FTSFNLxJDGoeG7q8OiR8OB4buxTUZHSOG6vE3hu7FCxq9U4bux4bqzVEhS4buxfeG7ueG7hOG7hOG7uVHEkEtLSOG7sUZIw4FNR+G7sUZI4bqgSOG7sVNHxajhu6JNRuG7sWhOQU3hu7FHw5JC4bux4bu44bqqxJBL4buxR8ONTUfhu7HhuqBNR+G7seG7r+G7q+G7sVJRQsah4burLy9Ic+G6quG7uU5TR+G7uU1HR07hu7lz4buuTS9NxJBWUi92d+G7r3Yv4buv4buz4buzQ3nhu6/hu63hu6/hu7fhu6/hu69Tw73hu7d54bu1S+G7r3NWxJDhuqrhu6Dhu6vhu7Hhu7lLU8ah4burw6JHw4Hhu7FNRkdI4bq8TeG7sULGr1Thu7HhurNUSFLhu7F94bu54buE4buE4bu5UcSQS0tI4buxRkjDgU1H4buxRkjhuqBI4buxU0fFqOG7ok1G4buxaE5BTeG7sUfDkkLhu7Hhu7jhuqrEkEvhu6vhu7FD4bu5U+G7uS3hu6BHTlNOLU5RSEZITeG7uUstUlFCxqHhu6tHU1Phu6BScC8vQkNNSExGc+G7rkjEkFNN4bu5TOG7oEtUUnPhu65NL1PDvXbhu60vVOG7oEtO4bu5Q8SQQy9HTlNNTXovduG7rXZ3X+G7rXdfdnYvS1RIUl9C4bu54buE4buE4bu5UcSQS0tIc8So4bugRuG7q+G7sS/hu6XDokfDgeG7sU1GR0jhurxN4buxQsavVOG7seG6s1RIUuG7sX3hu7nhu4Thu4Thu7lRxJBLS0hz4buxdcOiRlThu5BNcOG7sWbEkFRTxJBRUsO6w7kv4bug4bulw7nhu6Dhu7FCS+G7uVJSxqHhu6vhu6DDocSQ4bu5Q+G7q+G7pcOiR8OB4buxTUZHSOG6vE3hu7FCxq9U4buxTUbFqOG7mkjhu7HhurXhu7bhu7FGw5RC4bux4bu4UUbEkE1TSE3hu7nhu7HhurNUSFLhu7F94bu54buE4buE4bu5UcSQS0tI4buxROG6ouG7sVNR4bui4buxU0fDgU1H4buxQkfhu6Thu7FNR+G6tE3hu7FC4buk4bu54buxYUjhuqBI4buxU0fFqOG7ok1G4buxaE5BTeG7sUfDkkLhu7Hhu7jhuqrEkEvhu7FNw4NM4buxduG7rXZ34bux4buuw43hu7FNR+G7rE1G4buxRE9NRuG7sUZP4bug4buxTeG7mEjhu7FTUeG7kkjhu7FCR07hu7FLWeG7sVNHVFjDilPhu7Hhu67hur7hu7FCQULhu7Hhu6BHxajhu5ZNRuG7sVNRw41NR+G7sUTDgE7hu7FHw4FM4buxUUjhurxNRuG7seG7oEdI4buxU1RYw4pN4buxU0lNR3PDuS/hu6Dhu6XDueG7oOG7sUJL4bu5UlLGoeG7q+G7oHtOQ1jhu6vhu6XDs0jhu4BN4buxw6HDgU3hu7FL4bq0TOG7sUpHTuG7ueG7sUfDkkLhu7HDouG7ueG7sWlY4buxTUbDgVjhu7F2di934buxROG6ouG7sULDlU1G4bux4bqqw5Thu7FGSOG6oEjhu7FTR8Wo4buiTUbhu7FNw4FYcuG7sUThu5BNRuG7sVNH4buaSOG7sUJHTuG7seG6qkjDilPhu7HDlU1G4buxfeG7ueG7hOG7hOG7uVHEkEtLSOG7sVLhurrhu7FNR+G6pk3hu7FGSOG6oEjhu7FTR8Wo4buiTUbhu7FTUU5NRuG7seG6qlThu5hI4buxS+G7guG7sVNR4bu5TuG7sUZI4bqgSOG7sU1Gw4FY4buxdncveeG7sVPDgEjhu7HhuqVSS05zw7kv4bug4bulw7nhu6Dhu7FCS+G7uVJSxqHhu6vhu6B7TkNY4bur4bulfUFC4bux4bugR8Wo4buWTUbhu7FTUcONTUfhu7FEw4BO4buxR8OBTOG7sVFI4bq8TUbhu7Hhu6BHSOG7sVNUWMOKTeG7sVNJTUfhu7FMw5Xhu7FHw41NR+G7sUdP4bu54buxQkFCR+G7sUzhu5JT4buxUsOU4bux4bqqSMOKTeG7sVNH4bu5WOG7sUThu5hI4buxU8Wo4buWTUbhu7HGr01G4bux4buuxqBI4buxTUfhu7lU4bux4buuw4Hhu7FCT+G7seG7ruG7uUjhu7FTUcOT4buxTeG7mEjhu7HhuqrhuqZT4buxU1FOTUbhu7FNR0jhur5U4buxTUbDgU1HcuG7seG6quG7uU7hu7FG4buQTOG7sUrhu7bhu7FTR1ThuqZTcuG7seG7ruG6plPhu7FLWXLhu7FKSE1H4buxU8OK4bux4buuw4Hhu7FSSE1H4buxR8OSQnPDuS/hu6Dhu6XDueG7oOG7sUJL4bu5UlLGoeG7q+G7oHtOQ1jhu6vhu6XDs0jhu4BN4buxw6HDgU3hu7FL4bq0TOG7sUpHTuG7ueG7sUfDkkLhu7HDouG7ueG7sWlY4buxQuG7ueG7sU1G4bucSOG7sU1H4busTUbhu7FET01G4buxRk/hu6Dhu7FN4buYSOG7seG6quG6plPhu7FC4buk4bu54buxw5VNRuG7sUJHTuG7sUvhu4hNR+G7seG7ruG7qkLhu7FLWeG7sVNHVFjDilPhu7FTUU5NRuG7sVBUQeG7sVNRw41NR+G7sVJUw5RT4buxR+G7lk3hu7F44but4buxTcODTHPDuS/hu6Dhu6XDueG7oOG7sUJL4bu5UlLGoeG7q+G7oHtOQ1jhu6vhu6V9R+G7pOG7sVPDjEJH4bux4buJWOG7seG6quG7uU3hu7FGSOG6oEjhu7FTR8Wo4buiTUbhu7Hhu7jhuqrEkEvhu7Fy4buxw5VNRuG7scOhxJBLRsSQ4buxw6FOS0PEkE1y4buxQkdO4buxUeG6rk1G4buxSsOKU+G7sUfhu5zhu6Dhu7FS4buq4buxR0jhu4ZU4bux4bqqSMOKU+G7sVLhurRU4buxUsSCQuG7seG7ruG6vuG7sUfDjU1H4buxR8OSQuG7seG7rsagSOG7sUJBQuG7sULDlU1G4buxQsOZ4bux4buuw4Hhu7Hhu6BHxajhu5ZNRuG7seG7oEdB4bug4bux4bugR+G6tE3hu7FTSUJH4buxSkdFTuG7sUtFTnLhu7HDlU1G4buxfeG7ueG7hOG7hOG7uVHEkEtLSOG7sUThuqLhu7Hhu67DgeG7sUThu7lNRuG7sVNIw4rhu6Dhu7FTw5lC4buxQk/hu7FTQULhu7FE4buSTUbhu7FTTuG7sUvGoE3hu7FEw4pN4buxaE5BTeG7sUfDkkJzw7kv4bug4bulw7nhu6Dhu7FCS+G7uVJSxqHhu6vhu6B7TkNY4bur4bulw6LDg0zhu7FNRk5BSHLhu7FGSOG6oEjhu7FTR8Wo4buiTUbhu7FNw4FY4buxU0dU4buSQuG7seG7ruG6vuG7sU1Hw4Hhu7FoTkFN4buxR8OSQuG7sU1Gxajhu5pI4bux4bq14bu24buxW8SQTU1IUuG7sWdUS0tI4buu4bu5TeG7sU1H4bua4buxQsOVTUbhu7FTUcONTUfhu7FNRkdI4bq8TeG7sULGr1Thu7FC4buk4bu54buxw5VNRuG7seG7ruG6vuG7sULDglThu7FTUVVC4buxS0jhurxN4buxSsOKU+G7seG7rsOB4buxS1nhu7FTR1RYw4pT4buxR+G7lE3hu7FLTsOATXPDuS/hu6Dhu6XDueG7oOG7sUJL4bu5UlLGoeG7q+G7oHtOQ1jhu6vhu6Vdxajhu5xC4buxROG6sFPhu7FTR8SQTuG7sVPhurxN4buxQuG7pOG7ueG7sU1Hw4Hhu7FTTkFN4buxR8OSQuG7sU1Gxajhu5pI4buxw6Lhu7nhu7FpWOG7scOiSMSQS1Lhu7HDocSQTVFISuG7seG7uOG6qsSQS+G7sXXhu6/hu7Xhu612LeG7r+G7tXbhu7fDunLhu7FGSOG6oEjhu7FTR8Wo4buiTUbhu7FNw4FY4buxREjhu7FKw6hM4bux4buuxqBI4bux4bugR+G6pE3hu7FTR8Wo4buiTUbhu7FTUcOM4buxRkhB4bux4buzcnnhu7FTUUjhu4BU4buxSlFOTcSQUeG7sXXhu7Phu6/hu61z4but4but4but4buxaWdbw7pzL3PDuS/hu6Dhu6XDueG7oOG7sUJL4bu5UlLGoeG7q+G7oHtOQ1jhu6vhu7FSU1hLxJDGoeG7q1PEkFdTLeG7uUtIRk1w4buxUUhGR1Nx4bur4buldWho4buNw7PDoi/Ds0jEkFNN4bu5TCvDusO5L+G7oOG7pQ==