Nhà nghiên cứu Luis Caffarelli giành giải thưởng Toán học Abel
Nhà nghiên cứu người Mỹ gốc Argentina Luis Caffarelli đã trở thành chủ nhân của Giải thưởng Toán học Abel năm 2023 vì những đóng góp nổi trội cho lý thuyết về các phương trình đạo hàm riêng phi tuyến tính.
4buf4bq6w7l14bq2R+G7r+G7luG7luG7jXThu5Lhur3hurzGoEfDgnThu6HhuqHhurp3dUnhurjhurrhurzhuqpJdeG6tlLhu5p1w6Hhu5rhurzhu5Z1O+G7r8OJw4nhu6/hu5TDgkdH4bq8deG6uOG6vHdJ4bq6deG6uOG6vHnhurx1xqDhurpRw5RJ4bq4deG6vcONdkl14bq64buI4bq2deG7ruG6sMOCR+G7ny/hurrDueG7oeG7n+G7knXhurZH4buv4buW4buW4buNdOG7kjvhu6/hu5LGoOG6vMONSXThu6Hhu5/hurxI4bq4deG6tkfhu6/hu5bhu5bhu4104bq2SOG7li3hu5LhurrDjcagw4114bqyxqDhurrhu5pI4bqwdeG6vDvDgknGoMOC4buUdHXhu5bGoMWoR8OC4buNdOG7pOG6vOG6ssag4bq64buZdeG7qeG7pcO64buS4bum4buVdeG6usOC4bq84bq44bq6xqDhu5l1xanDucaw4buS4bum4buVdHXGoOG6vMagR8OC4buNdOG6oeG6und1SeG6uOG6uuG6vOG6qkl14bq2UuG7mnXDoeG7muG6vOG7lnU74buvw4nDieG7r+G7lMOCR0fhurx14bq44bq8d0nhurp14bq44bq8eeG6vHXGoOG6ulHDlEnhurh14bq9w412SXXhurrhu4jhurZ14buu4bqww4JHdeG6uuG6vknhurp1eUnhurp1w7l0deG7luG7lOG6tuG7jXQvL+G6vMah4bqw4buvw43GoOG6uuG7r0nhurrhurrDjeG7r8ahw5lJL0nDguG7pOG7li/hu6Xhu6fDueG7pS/DueG7q+G7q+G6ssaww7nDusO54butw7nDucag4bup4butxrDhu7FHw7nGoeG7pMOC4bqw4buSdHXhu69HxqDhu4104bqh4bq6d3VJ4bq44bq64bq84bqqSXXhurZS4buadcOh4bua4bq84buWdTvhu6/DicOJ4buv4buUw4JHR+G6vHXhurjhurx3SeG6unXhurjhurx54bq8dcag4bq6UcOUSeG6uHXhur3DjXZJdeG6uuG7iOG6tnXhu67hurDDgkd0deG6suG7r8ag4buvLeG7kuG6usONxqDDjS3DjeG7lOG6vOG6uOG6vEnhu69HLeG7luG7lOG6tuG7jXThurrGoMag4buS4buW4buZLy/hurbhurJJ4bq8SOG6uMahw5nhurzDgsagSeG7r0jhu5JH4bua4buWxqHDmUkvxqDhu6nhu6XDui/hu5rhu5JHw43hu6/hurLDguG6si/hurrDjcagSUl6L+G7pcO64bul4bunX8O64bunX+G7peG7pS9H4bua4bq84buWX+G6tuG7r8OJw4nhu6/hu5TDgkdH4bq8xqHhu4Thu5Lhurh0dS/hu6HhuqHhurp3dUnhurjhurrhurzhuqpJdeG6tlLhu5p1w6Hhu5rhurzhu5Z1O+G7r8OJw4nhu6/hu5TDgkdH4bq8xqF14bud4bqh4bq44buaTUnhu5l14bq5w4Lhu5rGoMOC4buU4buW4buj4bufL+G7kuG7oeG7n+G7knXhurZH4buv4buW4buW4buNdOG7kjLDguG7r+G6snThu6HhuqHhurp3dUnhurjhurrhurzhuqpJdeG6tlLhu5p1SeG6uFHhu47hurx1w6Dhu6x14bq4TOG6tnXhu67hu5ThurjDgknGoOG6vEnhu691w6Hhu5rhurzhu5Z1O+G7r8OJw4nhu6/hu5TDgkdH4bq8deG6tMO9dcag4buUw5R1xqDhurp3SeG6unXhurbhurrhu6B1SeG6usOASXXhurbhu6Dhu691MeG6vHnhurx1xqDhurpRw5RJ4bq4deG6vcONdkl14bq64buI4bq2deG7ruG6sMOCR3VJ4buzSHXhu6XDuuG7peG7p3XDmeG6vnVJ4bq6w5pJ4bq4deG6tMOMSeG6uHXhurjDjOG7knVJT+G6vHXGoOG7lE7hurx14bq24bq6w411R8avdcag4bq64buaxahCxqB1w5lDdeG6tnbhurZ14buS4bq6UcOSSeG6uHXGoOG7lOG6vknhurp14bq0eMONdeG6undIdeG7lOG6vOG6qknhurh14buS4bq64bq8dcag4buaxahCSXXGoMOKSeG6usah4bufL+G7kuG7oeG7n+G7knXhurZH4buv4buW4buW4buNdOG7kjrDjeG6ssWodOG7oeG7i+G6vERJdTJ3SXVHw4BIdUbhurrDjeG7r3Xhurrhu4jhurZ14bqh4buvdcOqxah1SeG6uHfFqHXhu6Xhu6Uv4bundeG6tMO9deG6tktJ4bq4deG6sEx14bq44bq8eeG6vHXGoOG6ulHDlEnhurh1SXfFqOG7l3XhurRNSeG6uHXGoOG6uuG7juG6vHXhurbhurrDjXXhurDhurxCxqB1S0nhurh1O+G7r8OJw4nhu6/hu5TDgkdH4bq8deG7luG6qHVJ4bq6w4NJdeG6uOG6vHnhurx1xqDhurpRw5RJ4bq4dcag4buUw41J4bq4deG6sOG7mk/hurx1R0V1xqDhu5Thu6/DjXXhurjhurx54bq8dUnhurh3xah14bul4bunL8awdcageOG6vHXhuqPhu5ZHw43GoeG7ny/hu5Lhu6Hhu5/hu5J14bq2R+G7r+G7luG7luG7jXThu5I6w43hurLFqHThu6E7duG6tnXhu5LhurpRw5JJ4bq4dcag4buU4bq+SeG6unXhurR4w4114bq6d0h14buU4bq84bqqSeG6uHXhu5Lhurrhurx1xqDhu5rFqEJJdcagw4pJ4bq6dUhLdeG6uuG6vknhurp14bq6w4zhu6914bq2duG6tuG6unVITsagdeG7lkx14bqw4bq8Qkl1xqDhurrhu6/FqHXhurRP4bq8dcagUcOSSeG6uHVSSeG6uHXDmeG7jOG6vHVJ4bq64buv4buadcOZd3XhurbDjHXDmeG7r+G6vHXGoOG7lOG7inVJT+G6vHXhurDDg8agdcag4buUw41J4bq4dUnhurrhurxD4buadUnhurh3SeG6uuG7l3XhurDhu6/DjXXhurhNSHVG4busdcag4bq64buaw4PGoOG7l3XDmcODxqB1R8av4buXdUbhurxJ4bq6dcagQnXDmXd14buW4bq8SeG6unXhurrhu4jhurbGoeG7ny/hu5Lhu6Hhu5/hu5J14bq2R+G7r+G7luG7luG7jXThu5I6w43hurLFqHThu6Hhu4vhurxESXUyd0l1R8OASHVG4bq6w43hu6914bq64buI4bq2deG6oeG7r3XDqsWodeG6tuG7r3VJ4bq4w5Xhurx1SeG6usOaSeG6uHXhurTDjEnhurh14bq4w4zhu5J1SU/hurx14bqww4PGoHXhurbhu6Dhu691S0nhurh14bq24bq6w411R+G7gknhurp1w5lU4bq2dUfGr3XGoOG6uuG7msWoQsagdcag4buUw41J4bq4deG7mOG7mnZ1xqDhu5Thur5J4bq6deG7luG7mkzGoHXhurrDkkl1xanDunVJ4buzSMah4bufL+G7kuG7oeG7n+G7knXhurZH4buv4buW4buW4buNdOG7kjrDjeG6ssWodOG7oTvhurrhu6B1xqDhu4Dhurbhurp14buDxah14bqw4buvSXXhurjhurx54bq8dcag4bq6UcOUSeG6uHXhu67hurDDgkd14buXdUtJ4bq4dTLDgkfhurjDgnUyw41H4bqyw4JJ4buXdeG6tuG6usONdeG7lOG7t0nhurh1RkLGoHXhurrDleG7knXhu5ZUdeG6uuG6vMSQ4buadeG6sOG6vELGoHXhu5bDgOG7mnXhu5bhu7XhurZ1w5lDdeG6uuG6vknhurp14bq64buI4bq2dcOZ4buM4bq8deG6tnbhurZ14bq2S0nhurh14bq24buedcOZd3Xhu5LhurpRw5JJ4bq4deG7kuG6unbhu5J14buS4bq6w4BJdcagw4rhurbhurp1RuG6uuG6pMONdUfhuqTDjeG7l3VLSeG6uHU74buvw4nDieG7r+G7lMOCR0fhurx14bq0w711w5l3deG6tOG7r0nhurh1xqDhurxC4buSdcag4bue4bq2deG6tsOMdcagduG6tnXhurROSeG6uHXGoMONdUfhu4xJdeG6tEJJdeG6vcONdkl14bq64buI4bq2xqHhu58v4buS4buh4buf4buSdeG6tkfhu6/hu5bhu5bhu4104buSOsON4bqyxah04buh4bqh4buzSHVJ4bq4w4124bq84buXdeG6uOG6vHnhurx1xqDhurpRw5RJ4bq4dUl3xah1xqDhurrhu5pO4bq2dcOZQ3VJ4bq6d3Xhur3DjXZJdeG6uuG7iOG6tnVJ4bq4UeG7juG6vHXDoOG7rHUsw4JJSeG6vOG7lnXhurvhu5pHR+G6vMOZ4buvSXVJ4bq64buOdeG6tktJ4bq4dcag4buU4bq+SeG6unVJ4bq44bq64bq84bqqSXXhurZS4buadeG6tuG7oOG7r3VLSeG6uHXDmUN14bq24bqg4buadcag4buU4buc4bq2dUfhurzhuqpJdUZCxqB1w5l3dUfGr3XGoOG6uuG7msWoQsagdeG6usOTSXVHw414Scah4bufL+G7kuG7oeG7n+G7knXhurZH4buv4buW4buW4buNdOG7kjrDjeG6ssWodOG7oS5Rw5XhurZ14bq04bu5xqB1xqDhurrDgsONdcag4bqqSXXhurbhu6Dhu691SeG6und1xqDDjXZJdeG6uuG7iOG6tnVJ4bq4UeG7juG6vHXhuqHhu691w6rFqHXhuqHhurzDgkfhu5Z1MsOCSeG7lOG6vEZ14buu4bqww4JHdeG7ncO54buxw7rhu6Utw7nhu7Hhu6Xhu63hu6Phu5d14bq44bq8eeG6vHXGoOG6ulHDlEnhurh1SXfFqHXhurThurx1RsOoSHXDmeG7jOG6vHXhu5LhurrhuqJJdcag4bq6UcOUSeG6uHXGoOG7lOG7gHXhurjhurx2deG7q+G7l8awdcag4buU4bq8ROG7mnVG4buUw41Jw4Lhu5R14bud4burw7nDusahw7rDusO6dcOq4bq7LOG7o8ahL8ah4bufL+G7kuG7oeG7n+G7knXhurZH4buv4buW4buW4buNdOG7kjrDjeG6ssWodHXhu5bGoMWoR8OC4buNdMagw4Lhu6bGoC3hu69H4bq84bq4SeG7mXXhu5ThurzhurjhurrGoOG7lXThu6Hhu53hur3hur3EqeG7i+G6oS/hu4vhurzDgsagSeG7r0gr4buj4bufL+G7kuG7oQ==