Nhà nghiên cứu Luis Caffarelli giành giải thưởng Toán học Abel
Nhà nghiên cứu người Mỹ gốc Argentina Luis Caffarelli đã trở thành chủ nhân của Giải thưởng Toán học Abel năm 2023 vì những đóng góp nổi trội cho lý thuyết về các phương trình đạo hàm riêng phi tuyến tính.
4budw4l1c+G6ruG7hOG7seG7mOG7mMOzcsOU4bq54bq44buU4buE4bqycuG7o8Ohw4nhu69zR0XDieG6uOG6rEdz4bquUOG7lnM54buW4bq44buYcz/hu7HEkMSQ4bux4buS4bqy4buE4buE4bq4c0Xhurjhu69Hw4lzReG6uHfhurhz4buUw4nhu6Dhu45HRXPhurlI4butR3PDicOM4bquc+G7sMSC4bqy4buE4budL8OJdeG7o+G7ncOUc+G6ruG7hOG7seG7mOG7mMOzcsOUP+G7scOU4buU4bq4SEdy4buj4bud4bq4RkVz4bqu4buE4bux4buY4buYw7Ny4bquRuG7mC3DlMOJSOG7lEhz4bqw4buUw4nhu5ZGxIJz4bq4P+G6skfhu5ThurLhu5Jyc+G7mOG7lOG7pOG7hOG6ssOzcsOa4bq44bqw4buUw4nhu5FzxanDunTDlMOZ4buTc8OJ4bqy4bq4RcOJ4buU4buRc+G7pXXhu6fDlMOZ4buTcnPhu5Thurjhu5Thu4ThurLDs3LDocOJ4buvc0dFw4nhurjhuqxHc+G6rlDhu5ZzOeG7luG6uOG7mHM/4buxxJDEkOG7seG7kuG6suG7hOG7hOG6uHNF4bq44buvR8OJc0Xhurh34bq4c+G7lMOJ4bug4buOR0Vz4bq5SOG7rUdzw4nDjOG6rnPhu7DEguG6suG7hHPDieG6vEfDiXN3R8OJc3Vyc+G7mOG7kuG6rsOzci8v4bq44buVxILhu7FI4buUw4nhu7FHw4nDiUjhu7Hhu5VVRy9H4bqyw5rhu5gvw7rDuXXDui91xrDGsOG6sOG7p3V0deG7q3V14buUxanhu6vhu6fhu6nhu4R14buV4buGw5RFcnPhu7Hhu4Thu5TDs3LDocOJ4buvc0dFw4nhurjhuqxHc+G6rlDhu5ZzOeG7luG6uOG7mHM/4buxxJDEkOG7seG7kuG6suG7hOG7hOG6uHNF4bq44buvR8OJc0Xhurh34bq4c+G7lMOJ4bug4buOR0Vz4bq5SOG7rUdzw4nDjOG6rnPhu7DEguG6suG7hHJz4bqw4bux4buU4buxLcOUw4lI4buUSC1I4buS4bq4ReG6uEfhu7Hhu4Qt4buY4buS4bquw7Nyw4nhu5Thu5TDlOG7mOG7kS8v4bqu4bqwR+G6uEZF4buVVeG6uOG6suG7lEfhu7FGw5Thu4Thu5bhu5jhu5VVRy/hu5TFqcO6dC/hu5bDlOG7hEjhu7HhurDhurLhurAvw4lI4buUR0d6L8O6dMO6w7lfdMO5X8O6w7ov4buE4buW4bq44buYX+G6ruG7scSQxJDhu7Hhu5LhurLhu4Thu4Thurjhu5Xhu4bDlEVycy/hu6PDocOJ4buvc0dFw4nhurjhuqxHc+G6rlDhu5ZzOeG7luG6uOG7mHM/4buxxJDEkOG7seG7kuG6suG7hOG7hOG6uOG7lXPGocOhReG7lktH4buRc2XhurLhu5bhu5ThurLhu5Lhu5jhu5vhu50vw5Thu6Phu53DlHPhuq7hu4Thu7Hhu5jhu5jDs3LDlDDhurLhu7HhurBy4bujw6HDieG7r3NHRcOJ4bq44bqsR3Phuq5Q4buWc0dF4bugw5LhurhzYeG7qnNFSuG6rnPhu7Dhu5JF4bqyR+G7lOG6uEfhu7FzOeG7luG6uOG7mHM/4buxxJDEkOG7seG7kuG6suG7hOG7hOG6uHPhurZ4c+G7lOG7kuG7jnPhu5TDieG7r0fDiXPhuq7DieG7onNHw4lBR3Phuq7hu6Lhu7FzIOG6uHfhurhz4buUw4nhu6Dhu45HRXPhurlI4butR3PDicOM4bquc+G7sMSC4bqy4buEc0d5RnPDunTDusO5c1XhurxzR8OJVEdFc+G6tklHRXNFScOUc0dN4bq4c+G7lOG7kkzhurhz4bquw4lIc+G7hOG7pnPhu5TDieG7luG7pOG6qOG7lHNV4bqqc+G6ruG7reG6rnPDlMOJ4bugT0dFc+G7lOG7kuG6vEfDiXPhurZ2SHPDieG7r0Zz4buS4bq44bqsR0Vzw5TDieG6uHPhu5Thu5bhu6ThuqhHc+G7lOG6ukfDieG7leG7nS/DlOG7o+G7ncOUc+G6ruG7hOG7seG7mOG7mMOzcsOUJkjhurDhu6Ry4bujw63hurhCR3Mw4buvR3Phu4RBRnPhu4LDiUjhu7Fzw4nDjOG6rnPDoeG7sXPhurvhu6RzR0Xhu6/hu6Rzw7rDui/DuXPhurZ4c+G6rsSoR0VzxIJKc0Xhurh34bq4c+G7lMOJ4bug4buOR0VzR+G7r+G7pOG7mXPhurZLR0Vz4buUw4nDkuG6uHPhuq7DiUhzxILhurjhuqjhu5RzxKhHRXM/4buxxJDEkOG7seG7kuG6suG7hOG7hOG6uHPhu5jhuqZzR8OJ4bqgR3NF4bq4d+G6uHPhu5TDieG7oOG7jkdFc+G7lOG7kkhHRXPEguG7lk3hurhz4buERHPhu5Thu5Lhu7FIc0Xhurh34bq4c0dF4buv4bukc8O6w7kv4bunc+G7lHbhurhzw6Dhu5jhu4RI4buV4budL8OU4buj4budw5Rz4bqu4buE4bux4buY4buYw7Nyw5QmSOG6sOG7pHLhu6M/4but4bquc8OUw4nhu6BPR0Vz4buU4buS4bq8R8OJc+G6tnZIc8OJ4buvRnPhu5LhurjhuqxHRXPDlMOJ4bq4c+G7lOG7luG7pOG6qEdz4buU4bq6R8OJc0bEqHPDieG6vEfDiXPDiUnhu7Fz4bqu4but4bquw4lzRkzhu5Rz4buYSnPEguG6uOG6qEdz4buUw4nhu7Hhu6Rz4bq2TeG6uHPhu5Thu6BPR0VzUEdFc1XDk+G6uHNHw4nhu7Hhu5ZzVeG7r3Phuq5Jc1Xhu7Hhurhz4buU4buSw41zR03hurhzxILhuqDhu5Rz4buU4buSSEdFc0fDieG6uOG6quG7lnNHReG7r0fDieG7mXPEguG7sUhzRUtGc+G7guG7qnPhu5TDieG7luG6oOG7lOG7mXNV4bqg4buUc+G7hOG7puG7mXPhu4LhurhHw4lz4buU4bqoc1Xhu69z4buY4bq4R8OJc8OJw4zhuq7hu5Xhu50vw5Thu6Phu53DlHPhuq7hu4Thu7Hhu5jhu5jDs3LDlCZI4bqw4bukcuG7o8Ot4bq4QkdzMOG7r0dz4buEQUZz4buCw4lI4buxc8OJw4zhuq5zw6Hhu7Fz4bq74bukc+G6ruG7sXNHReG7jOG6uHNHw4lUR0Vz4bq2SUdFc0VJw5RzR03hurhzxILhuqDhu5Rz4bqu4bui4buxc8SoR0Vz4bquw4lIc+G7hOG7gEfDiXNVUuG6rnPhu4Thu6Zz4buUw4nhu5bhu6Thuqjhu5Rz4buU4buSSEdFc+G7kOG7luG7rXPhu5Thu5LhurxHw4lz4buY4buWSuG7lHPDiU9Hc+G7pXRzR3lG4buV4budL8OU4buj4budw5Rz4bqu4buE4bux4buY4buYw7Nyw5QmSOG6sOG7pHLhu6M/w4nhu6Jz4buUw4rhuq7DiXPhu4Hhu6RzxILhu7FHc0Xhurh34bq4c+G7lMOJ4bug4buOR0Vz4buwxILhurLhu4Rz4buZc8SoR0VzMOG6suG7hEXhurJzMEjhu4ThurDhurJH4buZc+G6rsOJSHPhu5Lhu7NHRXPhu4Lhuqjhu5Rzw4nhu4zDlHPhu5hSc8OJ4bq4Q+G7lnPEguG6uOG6qOG7lHPhu5hB4buWc+G7mMO94bquc1Xhuqpzw4nhurxHw4lzw4nDjOG6rnNVw5Phurhz4bqu4but4bquc+G6rsSoR0Vz4bqu4bucc1Xhu69zw5TDieG7oE9HRXPDlMOJ4butw5Rzw5TDiUFHc+G7lOG6uuG6rsOJc+G7gsOJ4bq0SHPhu4ThurRI4buZc8SoR0VzP+G7scSQxJDhu7Hhu5LhurLhu4Thu4Thurhz4bq2eHNV4buvc+G6tuG7sUdFc+G7lOG6uOG6qMOUc+G7lOG7nOG6rnPhuq5Jc+G7lOG7reG6rnPhurZMR0Vz4buUSHPhu4TDk0dz4bq24bqoR3PhurlI4butR3PDicOM4bqu4buV4budL8OU4buj4budw5Rz4bqu4buE4bux4buY4buYw7Nyw5QmSOG6sOG7pHLhu6PDoXlGc0dFSOG7reG6uOG7mXNF4bq4d+G6uHPhu5TDieG7oOG7jkdFc0fhu6/hu6Rz4buUw4nhu5ZM4bquc1XhuqpzR8OJ4buvc+G6uUjhu61Hc8OJw4zhuq5zR0Xhu6DDkuG6uHNh4buqczrhurJHR+G6uOG7mHPDqeG7luG7hOG7hOG6uFXhu7FHc0fDicOSc+G6rsSoR0Vz4buU4buS4bq8R8OJc0dFw4nhurjhuqxHc+G6rlDhu5Zz4bqu4bui4buxc8SoR0VzVeG6qnPhuq7DgeG7lnPhu5Thu5LGoOG6rnPhu4ThurjhuqxHc+G7guG6qOG7lHNV4buvc+G7hOG7pnPhu5TDieG7luG7pOG6qOG7lHPDiU5Hc+G7hEh2R+G7leG7nS/DlOG7o+G7ncOUc+G6ruG7hOG7seG7mOG7mMOzcsOUJkjhurDhu6Ry4bujO+G7oOG7jOG6rnPhurbhu7Xhu5Rz4buUw4nhurJIc+G7lOG6rEdz4bqu4bui4buxc0fDieG7r3Phu5RI4butR3PDicOM4bquc0dF4bugw5Lhurhzw6Hhu7Fz4bq74bukc8Oh4bq44bqy4buE4buYczDhurJH4buS4bq44buCc+G7sMSC4bqy4buEc8ahdeG7qXTDui114bupw7rhu6vhu5vhu5lzReG6uHfhurhz4buUw4nhu6Dhu45HRXNH4buv4bukc+G6tuG6uHPhu4LDqEZzVcOT4bq4c8OUw4nDgEdz4buUw4nhu6Dhu45HRXPhu5Thu5LDinNF4bq44butc8aw4buZ4bunc+G7lOG7kuG6uELhu5Zz4buC4buSSEfhurLhu5JzxqHGsHV04buVdHR0c+G6u8OpOuG7m+G7lS/hu5Xhu50vw5Thu6Phu53DlHPhuq7hu4Thu7Hhu5jhu5jDs3LDlCZI4bqw4bukcnPhu5jhu5Thu6Thu4ThurLDs3Lhu5ThurLDmeG7lC3hu7Hhu4ThurhFR+G7kXPhu5LhurhFw4nhu5Thu5Ny4bujxqHhurnhurnhu4vDrcOhL8Ot4bq44bqy4buUR+G7sUYr4bub4budL8OU4buj