Nhà nghiên cứu Luis Caffarelli giành giải thưởng Toán học Abel
Nhà nghiên cứu người Mỹ gốc Argentina Luis Caffarelli đã trở thành chủ nhân của Giải thưởng Toán học Abel năm 2023 vì những đóng góp nổi trội cho lý thuyết về các phương trình đạo hàm riêng phi tuyến tính.
w7pG4but4bur4bqqSuG7t1FR4buX4bup4bueZ0dSSkThu6nDueG6tUZB4burTOG7hEZH4bq6TOG7q+G6qsWoU+G7q+G6t1NHUeG7q3vhu7fhu4Lhu4Lhu7dQREpKR+G7q+G7hEdBTEbhu6vhu4RHw4BH4burUkbhu6bhu5xM4buE4burZ03hu7lM4burRsOT4bqq4bur4bu24bqoRErDui9G4butw7nDuuG7nuG7q+G6qkrhu7dRUeG7l+G7qeG7nnvhu7fhu55SR01M4bupw7nDukdL4buE4bur4bqqSuG7t1FR4buX4bup4bqqS1Et4bueRk1STeG7q0JSRlNL4bqo4burR3tETFJEUOG7qeG7q1FSV0pE4buX4bup4buuR0JSRuG7oeG7q3nhu6/hu7Hhu55WcOG7q0ZER+G7hEZS4buh4burd+G7rXjhu55WcOG7qeG7q1JHUkpE4buX4bup4bq1RkHhu6tM4buERkfhurpM4bur4bqqxahT4bur4bq3U0dR4bure+G7t+G7guG7guG7t1BESkpH4bur4buER0FMRuG7q+G7hEfDgEfhu6tSRuG7puG7nEzhu4Thu6tnTeG7uUzhu6tGw5Phuqrhu6vhu7bhuqhESuG7q0ZJTEbhu6vDgExG4bur4but4bup4burUVDhuqrhu5fhu6kvL0dy4bqo4bu3TVJG4bu3TEZGTeG7t3Lhu6xML0xE4buuUS/hu6924but4buvL+G7rcO9w71CeOG7reG7seG7reG7teG7reG7rVJ54bu1eOG7s0rhu61y4buI4bue4buE4bup4bur4bu3SlLhu5fhu6nhurVGQeG7q0zhu4RGR+G6ukzhu6vhuqrFqFPhu6vhurdTR1Hhu6t74bu34buC4buC4bu3UERKSkfhu6vhu4RHQUxG4bur4buER8OAR+G7q1JG4bum4bucTOG7hOG7q2dN4bu5TOG7q0bDk+G6quG7q+G7tuG6qERK4bup4burQuG7t1Lhu7ct4bueRk1STS1NUEfhu4RHTOG7t0otUVDhuqrhu5fhu6lGUlLhu55R4buhLy/huqpCTEdL4buEcuG7rEdEUkzhu7dL4bueSlNRcuG7rEwvUnnhu6/hu7EvU+G7nkpN4bu3QkRCL0ZNUkxMei/hu6/hu7Hhu692X+G7sXZf4buv4buvL0pTR1Ff4bqq4bu34buC4buC4bu3UERKSkdy4buI4bue4buE4bup4burL8O54bq1RkHhu6tM4buERkfhurpM4bur4bqqxahT4bur4bq3U0dR4bure+G7t+G7guG7guG7t1BESkpHcuG7q3ThurXhu4RTw5RM4buh4bur4buFRFNSRFBRdcO6L+G7nsO5w7rhu57hu6vhuqpK4bu3UVHhu5fhu6nhu55hROG7t0Lhu6nDueG6tUZB4burTOG7hEZH4bq6TOG7q+G6qsWoU+G7q0zhu4Thu6bGoEfhu6vhurPhu7Thu6vhu4TDleG6quG7q+G7tlDhu4RETFJHTOG7t+G7q+G6t1NHUeG7q3vhu7fhu4Lhu4Lhu7dQREpKR+G7q0PhuqDhu6tSUOG7nOG7q1JGQUxG4bur4bqqRsOZ4burTEbhurJM4bur4bqqw5nhu7fhu6s5R8OAR+G7q1JG4bum4bucTOG7hOG7q2dN4bu5TOG7q0bDk+G6quG7q+G7tuG6qERK4burTOG6okvhu6vhu6/hu7Hhu6924bur4busSeG7q0xG4buwTOG7hOG7q0NOTOG7hOG7q+G7hE7hu57hu6tM4buSR+G7q1JQ4buQR+G7q+G6qkZN4burSljhu6tSRlNX4bq8UuG7q+G7rMOK4bur4bqq4bu54bqq4bur4bueRuG7puG7lEzhu4Thu6tSUElMRuG7q0PDgU3hu6tGQUvhu6tQR+G6ukzhu4Thu6vhu55GR+G7q1JTV+G6vEzhu6tSSExGcsO6L+G7nsO5w7rhu57hu6vhuqpK4bu3UVHhu5fhu6nhu54+TUJX4bupw7lvR+G6vkzhu6thQUzhu6tK4bqyS+G7q8SoRk3hu7fhu6tGw5Phuqrhu6vhurXhu7fhu6toV+G7q0zhu4RBV+G7q+G7r+G7ry924burQ+G6oOG7q+G6quG7jkzhu4Thu6vhuqjDleG7q+G7hEfDgEfhu6tSRuG7puG7nEzhu4Thu6tMQVdx4burQ8OUTOG7hOG7q1JGxqBH4bur4bqqRk3hu6vhuqhH4bq8UuG7q+G7jkzhu4Thu6t74bu34buC4buC4bu3UERKSkfhu6tR4bq44burTEbhuqRM4bur4buER8OAR+G7q1JG4bum4bucTOG7hOG7q1JQTUzhu4Thu6vhuqhT4buSR+G7q0rhu4bhu6tSUOG7t03hu6vhu4RHw4BH4burTOG7hEFX4bur4buvdi944burUsOBR+G7q8OiUUpNcsO6L+G7nsO5w7rhu57hu6vhuqpK4bu3UVHhu5fhu6nhu54+TUJX4bupw7l74bu54bqq4bur4bueRuG7puG7lEzhu4Thu6tSUElMRuG7q0PDgU3hu6tGQUvhu6tQR+G6ukzhu4Thu6vhu55GR+G7q1JTV+G6vEzhu6tSSExG4burS+G7juG7q0ZJTEbhu6tGTuG7t+G7q+G6quG7ueG6qkbhu6tL4buQUuG7q1HDleG7q+G6qEfhurxM4burUkbhu7dX4burQ+G7kkfhu6tS4bum4buUTOG7hOG7q8WoTOG7hOG7q+G7rOG7lkfhu6tMRuG7t1Phu6vhu6xB4bur4bqqTuG7q+G7rOG7t0fhu6tSUE/hu6tM4buSR+G7q+G6qOG6pFLhu6tSUE1M4buE4burTEZHw4pT4burTOG7hEFMRnHhu6vhuqjhu7dN4bur4buEw5RL4burxKjhu7Thu6tSRlPhuqRSceG7q+G7rOG6pFLhu6tKWHHhu6vEqEdMRuG7q1Lhurzhu6vhu6xB4burUUdMRuG7q0bDk+G6qnLDui/hu57DucO64bue4bur4bqqSuG7t1FR4buX4bup4buePk1CV+G7qcO5b0fhur5M4burYUFM4burSuG6skvhu6vEqEZN4bu34burRsOT4bqq4bur4bq14bu34buraFfhu6vhuqrhu7fhu6tM4buE4buaR+G7q0xG4buwTOG7hOG7q0NOTOG7hOG7q+G7hE7hu57hu6tM4buSR+G7q+G6qOG6pFLhu6vhuqrDmeG7t+G7q+G7jkzhu4Thu6vhuqpGTeG7q0rhu4pMRuG7q+G7rOG7qOG6quG7q0pY4burUkZTV+G6vFLhu6tSUE1M4buE4bur4bugU+G7ueG7q1JQSUxG4burUVPDlVLhu6tG4buUTOG7q3fhu7Hhu6tM4bqiS3LDui/hu57DucO64bue4bur4bqqSuG7t1FR4buX4bup4buePk1CV+G7qcO5e0bDmeG7q1LDjeG6qkbhu6vhu4tX4bur4bqo4bu3TOG7q+G7hEfDgEfhu6tSRuG7puG7nEzhu4Thu6vhu7bhuqhESuG7q3Hhu6vhu45M4buE4burYURK4buEROG7q2FNSkJETHHhu6vhuqpGTeG7q1DEgkzhu4Thu6vEqOG6vFLhu6tG4bua4bue4burUeG7qOG7q0ZH4buAU+G7q+G6qEfhurxS4burUeG6slPhu6tRw4Phuqrhu6vhu6zDiuG7q0ZJTEbhu6tGw5Phuqrhu6vhu6zhu5ZH4bur4bqq4bu54bqq4bur4bqq4buOTOG7hOG7q+G6qsOa4bur4busQeG7q+G7nkbhu6bhu5RM4buE4bur4bueRuG7ueG7nuG7q+G7nkbhurJM4burUkjhuqpG4burxKhGxJBN4burSsSQTXHhu6vhu45M4buE4bure+G7t+G7guG7guG7t1BESkpH4burQ+G6oOG7q+G7rEHhu6tD4bu3TOG7hOG7q1JH4bq84bue4burUsOa4bqq4bur4bqqTuG7q1Lhu7nhuqrhu6tD4buQTOG7hOG7q1JN4burSuG7lkzhu6tD4bq8TOG7q2dN4bu5TOG7q0bDk+G6qnLDui/hu57DucO64bue4bur4bqqSuG7t1FR4buX4bup4buePk1CV+G7qcO54bq14bqiS+G7q0zhu4RN4bu5R3Hhu6vhu4RHw4BH4burUkbhu6bhu5xM4buE4burTEFX4burUkZT4buQ4bqq4bur4busw4rhu6tMRkHhu6tnTeG7uUzhu6tGw5Phuqrhu6tM4buE4bumxqBH4bur4bqz4bu04burfURMTEdR4burZlNKSkfhu6zhu7dM4burTEbGoOG7q+G6quG7jkzhu4Thu6tSUElMRuG7q0zhu4RGR+G6ukzhu6vhuqrFqFPhu6vhuqrDmeG7t+G7q+G7jkzhu4Thu6vhu6zDiuG7q+G6quG6tFPhu6tSUFThuqrhu6tKR+G6ukzhu6vEqOG6vFLhu6vhu6xB4burSljhu6tSRlNX4bq8UuG7q0bhu5hM4burSk3DgUxyw7ov4buew7nDuuG7nuG7q+G6qkrhu7dRUeG7l+G7qeG7nj5NQlfhu6nDuVvhu6bhu5rhuqrhu6tD4bquUuG7q1JGRE3hu6tS4bq6TOG7q+G6qsOZ4bu34burTEZB4burUk3hu7lM4burRsOT4bqq4burTOG7hOG7psagR+G7q+G6teG7t+G7q2hX4bur4bq1R0RKUeG7q2FETFBHxKjhu6vhu7bhuqhESuG7q3Thu63hu7Phu7Hhu68t4but4buz4buv4bu1dXHhu6vhu4RHw4BH4burUkbhu6bhu5xM4buE4burTEFX4burQ0fhu6vEqMOoS+G7q+G7rOG7lkfhu6vhu55Gw4JM4burUkbhu6bhu5xM4buE4burUlDDjeG7q+G7hEfhu7nhu6vDvXF44burUlBH4bq+U+G7q8SoUE1MRFDhu6t0w73hu63hu7Fy4bux4bux4bux4buraGZ9dXIvcsO6L+G7nsO5w7rhu57hu6vhuqpK4bu3UVHhu5fhu6nhu54+TUJX4bup4burUVJXSkThu5fhu6lSRFZSLeG7t0pH4buETOG7oeG7q1BH4buERlJw4bupw7l0Z2fDsm/hurUvb0dEUkzhu7dLK3XDui/hu57DuQ==