Tỷ lệ ủng hộ Tổng thống Mỹ Donald Trump cao nhất trong 2 năm
(Baothanhhoa.vn) - Kết quả cuộc thăm dò dư luận do Harvard CAPS/Harris Poll công bố ngày 31/5 cho biết tỷ lệ cử tri ủng hộ Tổng thống Mỹ Donald Trump đạt mức cao nhất trong vòng 2 năm qua do sự lạc quan của cử tri về nền kinh tế Mỹ .
beG6ruG7kcO1duG6qOG7n+G7iOG7iOG7heG7j8ON4bqx4bqwxKjhuqh54buPbuG6seG7nMO14bqow4DDtU5CxILDteG6ruG6vsO14bqx4buAQsSCw7XEqOG6ruG6vELEgsO1e+G7osO1V0NC4buf4bqod8O14bqx4buKSuG6qsONw7V24bufQ8O1QuG6rsawxKjDtcSo4buKQ0LEgsO14buTw7VCdOG6qm0v4bqu4buRbm3DjcO1duG6qOG7n+G7iOG7iOG7heG7j8ONP3nhu5934buPbjxBxKjDtcOMSnLDtXZK4bq+dsO1xKjhuq504bqqw7V3xJDDtXfDk8O14bqoSuG7q0LDtXdDw7U/4buf4buK4buQ4buf4buKd8O1VuG7nuG6o+G6ry8/4buf4buK4buK4bqw4buIw7XhuqND4bqo4bqow7V24bq6QsSCw7Xhu6/hurzDtULEgnDhu5TDteG7meG7kS/hu5fDtXbhuq5Dw7Xhu6/hurBBxKjDtcSo4bucw7XhuqjDgMO1dsOVw7XEqOG7iuG6sMO1TkLEgsO14bqu4bq+w7XhurHhu4BCxILDtcSo4bqu4bq8QsSCw7V74buiw7VXQ0Lhu5/huqh3w7XhurHhu4pK4bqqw43DtXhxxKjDteG6qsOSdsO1duG7n0PDtULhuq7GsMSow7XEqOG7ikNCxILDteG7kMSQQsSCw7Xhu5PDtUJ04bqqw7XDjErhu5/DtXdDw7Xhu4jhu47DteG6qHF2w7XDjErhu59Cw7V2TuG7n8O1dsOVw7XEqOG7iuG6sMO14buQw4HDtULDgULDteG6rOG6sELhuq7DtcSoQcO1e+G7osO1xKltL8ONbm3DjcO1duG6qOG7n+G7iOG7iOG7heG7j8ON4buuQ3fhu5Thu4/DteG7iMSo4buU4bqoeeG7heG7j8SoeeG7mMSoLeG7n+G6qOG6sMSCQsOsw7V2eULEqHnhu4rhu4vhu49ubeG7iMSo4buKQ0LEgsO1duG6qOG7n+G7iOG7iOG7heG7j8ONVnlCxKh54buK4buPbm3hurDhuqrEgsO1duG6qOG7n+G7iOG7iOG7heG7j3fEqOG6rkrhuqrhu6/DteG6sFZ5QsSoeeG7iuG7j8O14buIxKjhu5Thuqh54buF4buP4buS4bqwd8So4bquw6zDtcah4buTw7TDjeG7mOG7i8O14bqueeG6sMSC4bquxKjDrMO14buV4buR4buZw43hu5jhu4vhu4/DteG7iOG7inbhu4Xhu48vL+G6sMSp4buv4bufQ8So4bqu4bufQuG6ruG6rkPhu5/EqeG7kEIvQnnhu5Lhu4gv4buR4buj4buT4buRL+G7keG7m+G7nXfGoeG7keG7keG7keG7l8O04buZxKjhu53DtOG7neG7l+G6qOG7oy3EqOG7ikrhuqrDjS3hu5PEqeG6psONxILhu4/DteG7n+G6qMSo4buF4buP4bqx4bucw7XhuqjDgMO1TkLEgsO14bqu4bq+w7XhurHhu4BCxILDtcSo4bqu4bq8QsSCw7V74buiw7VXQ0Lhu5/huqh3w7XhurHhu4pK4bqqw43DtXbhu59Dw7VC4bquxrDEqMO1xKjhu4pDQsSCw7Xhu5PDtUJ04bqq4buPw7Uvbm0v4buIxKjhu4pDQsSCbm0vw41ubcONw7V24bqo4buf4buI4buI4buF4buPw41W4bufw43EqOG6sENC4buPbm3hu5/DteG6ruG7innDg+G7heG7j+G6rsSoxKjDjeG7iMOsLy/hu5Lhu5Lhu5LEqeG7kOG6sHnEqELhu5/huqrDjeG6qErhu4jEqeG7kEIvxKjhu5/EguG7iC/hurFneeG7kWfhu6/hu69n4buj4buXQsSCLcSo4bquZ3nhu5Fn4buv4buvZ+G7o+G7kULEgi17Z3nhu5Fn4buv4buvZ+G7r+G7o8Sp4buQQsON4buPbm3hu4jEqOG7ikNCxIJu4bqx4buAQsSCw7XEqOG6ruG6vELEgsO1e+G7om0v4buIxKjhu4pDQsSCbm0v4bufbm3hu5/DteG6ruG7innDg+G7heG7j+G6rsSoxKjDjeG7iMOsLy/hu5Lhu5Lhu5LEqeG7kOG6sHnEqELhu5/huqrDjeG6qErhu4jEqeG7kEIvxKjhu5/EguG7iC9XQ0Lhu5/huqh3LeG6seG7ikrhuqrDjcSp4buQQsON4buPbm3hu4jEqOG7ikNCxIJuV0NC4buf4bqod8O14bqx4buKSuG6qsONbS/hu4jEqOG7ikNCxIJubS/hu59uxKnDtWtSQuG6rsOsw7XhurE/w6kv4bqx4bqxw6nEkX1sbS/DjW5tw43DtXbhuqjhu5/hu4jhu4jhu4Xhu4/DjeG7rkN34buU4buPbuG6seG6rnlDw7XhuqxBxKjDtcOMSnLDtcSo4bqudOG6qsO1d8SQ4buJw7Xhu5Xhu51nw7Xhu4jhurzDtULEgsOTRuG6sMO1eMOTR3bDteG6rsOJ4bqww7VOQsSCw7Xhuq7hur7DteG7kOG6sMOAdsO14bqocOG6qsO1dk7hu5/DteG6seG7gELEgsO1xKjhuq7hurxCxILDteG6seG7ikrhuqrDjeG7icO1xKh0QsSCw7XEqOG7jMO14buV4buXZ8O14buIQ8O14buQ4buE4bqww7XhuqxBxKjDtcOMSnLDtXZK4bq+dsO1xKjhuq504bqqw7V3xJDDtcSo4bqu4buhQsSCw7Xhu67hu5/DteG7kOG7jOG7n8O1w4xK4buf4buJw7XEqOG7ikNCxILDteG6rOG6ruG6sMO1xKjhu5zDteG6qMOAw7Xhuqzhuq7hurpCxILDtU5CxILDteG6ruG6vsO14bqocMO14buX4buTZ8SpbS/DjW5tw43DtXbhuqjhu5/hu4jhu4jhu4Xhu4/DjeG7rkN34buU4buPblZK4bq+dsO1xKjhuq504bqqw7V3xJDDtXZPQsSCw7V24bquQ8O1xKjhuq7GsOG7lMO14bqqw5J2w7VOQsSCw7Xhuq7hur7DtXbhu59Dw7Xhuqzhu5zDteG6qE12w7VrxqHhu5NnbMO1eOG6vOG6sMO14buQ4buE4bqww7V24buhduG6rsO1xKjhurBBw43DtXbhu6tCw7V2TuG7n8O14bqx4buAQsSCw7XEqOG6ruG6vELEgsO14bqx4buKSuG6qsONw7Xhu5DDgcO14buQ4bqww4B2w7Xhuqhw4bqqw7Xhu5Bww7Xhu5fhu6Nnw7V44bq84bqww7Xhu5Dhu4ThurDDtXbhu6F24bquw7XEqOG6rsOSdsO14bq6QsSCw7V44bqww4FKw7Xhuq5wQuG6rsO1QsOBQsO14bqs4bqwQuG6rsO1xKhBxKltL8ONbm3DjcO1duG6qOG7n+G7iOG7iOG7heG7j8ON4buuQ3fhu5Thu49u4bqx4buKQ0LEgsO14bqs4bqu4bqww7V4ROG7icO14buZ4bujZ8O1dsOVw7XEqOG7iuG6sMO1duG6rkPDteG7isO6QsSCw7V4xrDEqMO1QsOT4buEdsO1eOG7n0LEgsO1eOG6sMO1eEtCxILDteG6rsOT4buEQsSCw7Xhu5Bww7Xhu5fhu5Fnw7V24bquQ8O14buKw7pCxILDtULDgULDteG6rOG6sELhuq7DtcSoQcO1eOG7n0LEgsO1eOG6sMO1eEtCxILDteG6rsOT4buEQsSCxKnDtVZEw7XEqOG7hOG6sMO14bub4buRZ8O1dsOVw7XEqOG7iuG6sMO1duG6rkPDteG7isO6QsSCw7VCw4FCw7XhuqzhurBC4bquw7XEqEHDtXjhu59CxILDteG7isawxKjDteG6qnFC4bquw7Xhuq5Dw7l2w7V2RMO1w43huq7hu6lCw7XhuqpxQuG6rsSpbS/DjW5tw43DtXbhuqjhu5/hu4jhu4jhu4Xhu4/DjeG7rkN34buU4buPbuG6seG6rnlDw7XhurpCxILDtXvhu5/hu4rhuqzDteG6o3lCQuG7icO1eMOKQsSCw7XEguG6sOG7oeG6qsO1eOG6vHbDtXZK4bq+dsO1xKjhuq504bqqw7V3xJDDtcSo4buK4bu5QuG7icO1w4xK4bufQsO1eOG6sOG6oOG6qsO1dk7hu5/DtULEgsOTRuG6sMO1d8WpQsO1e+G7osO14buQw4HDtULDgULDteG6rOG6sELhuq7DtcSoQcO1xILhurBLw43DteG6qHDhuqrDtcSodELEgsO1xKjhu5zDteG6qMOAw7VOQsSCw7Xhuq7hur7DtXjhurzhurDDteG7kOG7hOG6sMO14bqx4buAQsSCw7XEqOG6ruG6vELEgsO14bqx4buKSuG6qsONxKltL8ONbm3DjcO1duG6qOG7n+G7iOG7iOG7heG7j8ON4buuQ3fhu5Thu49ufcSCw5NG4bqww7V3xalCw7V74buiw7Xhu69w4buUw7XEqMOJw7XDjErhu59Cw7V44bqw4bqg4bqqw7XEqOG7ikpCxILDteG6qOG7q8ONw7Xhuq5Dw7l2w7XEqOG6tnbhuq7DtXbhu452w7V44bq84bqww7Xhu5Dhu4ThurDDtULhuq7DlELEgsO14bqucELhuq7DtXjhur5CxILDtXZO4bufw7XhurpCxILDtXbhuq5Ow7V94bqucMO14bqx4buKdULEgsO14buQw4HDtXbhu6F2w7Xhu5DGsELDtXjDgcO1QuG6rsOTw7XhurHhu4pKQsSCw7XDo0rhurx2w7Xhu5Bww7VC4bqu4burw43DtXbDk8SpbS/DjW5tw43DtXbhuqjhu5/hu4jhu4jhu4Xhu4/DjeG7rkN34buU4buPbjJCxILDteG6o3lCQsO1dk9CxILDtULhuq7hu6tCw7V44bq0QuG6rsO14buKw7pCxILhu4nDteG6quG7huG6sMO1eOG6sOG6oOG6qsO1xKh0QsSCw7XEqOG7ikNCxILDtcON4bquceG6qsO14buQ4bqww7Xhu5Xhu5dnLeG7l8O0Z8O14buI4bu3w7V2cuG6sMO1xKjhuq7hurDDgELDteG6rOG6rnLDtUJ0QsSCw7XEqOG7oeG6sMO1eHV2w7V2w5XDtXZO4bufw7XhurHhu4BCxILDtcSo4bqu4bq8QsSCw7XhurHhu4pK4bqqw43EqW0vw41ubcONw7V24bqo4buf4buI4buI4buF4buPw43hu65Dd+G7lOG7j27hurHhu5zDteG6qMOAw7V2w5XDtcSo4buK4bqww7VOQsSCw7Xhuq7hur7DteG6seG7gELEgsO1xKjhuq7hurxCxILDteG6seG7ikrhuqrDjcO1xKjhu4pDQsSCw7V2SuG6vnbDtcSo4bqudOG6qsO1d8SQw7VCcOG7lMO1duG7n0PDteG6ruG7gkLDtULhuq7hurDDgUrDteG7iEPDteG7kOG7hOG6sMO1duG7oXbDtXZK4bq+dsO1xKjhuq504bqqw7V3xJDDtcSo4buKw5Phu4R2w7V4xanhu5Thu4nDteG7kOG6vELDtcSo4buKSkLEgsO14buv4bqyQuG6rsO1duG6rsOCw7V4ccSow7XEqOG7jMO14buZ4budLeG7leG7lWfEqW0vw41ubcONw7V24bqo4buf4buI4buI4buF4buPw43huq9DSuG7inZ54buPbj7huqPDtWvhurHhuq55Q8O1xIN5SsSoeeG7iuG7iGxtL8ONbg==