Tỷ lệ ủng hộ Tổng thống Mỹ Donald Trump cao nhất trong 2 năm
(Baothanhhoa.vn) - Kết quả cuộc thăm dò dư luận do Harvard CAPS/Harris Poll công bố ngày 31/5 cho biết tỷ lệ cử tri ủng hộ Tổng thống Mỹ Donald Trump đạt mức cao nhất trong vòng 2 năm qua do sự lạc quan của cử tri về nền kinh tế Mỹ .
4buHd+G7i8OtcsOBw7PhurrhurrhuqtpRTN44bq8w4F1aeG7gzNOw63DgeG7q8Ot4buC4bqgdsOtd+G6pMOtM+G6puG6oHbDreG6vHfhurThuqB2w609T8OtU+G6ouG6oMOzw4Fzw60z4bq4w4rDgEXDrXLDs+G6osOt4bqgd+G7neG6vMOt4bq84bq44bqi4bqgdsOt4buJw63huqDhu5HDgOG7hy934buL4buD4buHRcOtcsOBw7PhurrhurrhuqtpRVd1w7NzaeG7g0DGsOG6vMOtw4nDisO1w61yw4rhuqRyw63hurx34buRw4DDrXPEgsOtc0bDrcOBw4rhu5/huqDDrXPhuqLDrVfDs+G6uOG7isOz4bq4c8OtUsOTIDIvV8Oz4bq44bq4eOG6usOtIOG6osOBw4HDrXLhurLhuqB2w61x4bq0w63huqB24buNSsOtxKnhu4sva8OtcnfhuqLDrXF4xrDhurzDreG6vE7DrcOB4burw61yw43DreG6vOG6uHjDreG7guG6oHbDrXfhuqTDrTPhuqbhuqB2w63hurx34bq04bqgdsOtPU/DrVPhuqLhuqDDs8OBc8OtM+G6uMOKw4BFw6104buP4bq8w63DgEdyw61yw7PhuqLDreG6oHfhu53hurzDreG6vOG6uOG6ouG6oHbDreG7isSC4bqgdsOt4buJw63huqDhu5HDgMOtw4nDisOzw61z4bqiw63hurpJw63DgeG7j3LDrcOJw4rDs+G6oMOtcuG7gsOzw61yw43DreG6vOG6uHjDreG7iuG7qcOt4bqg4bup4bqgw61BeOG6oHfDreG6vMaww609T8Ot4bq94buHL0Xhu4Phu4dFw61yw4HDs+G6uuG6uuG6q2lFUeG6onNKacOt4bq64bq8SsOBdeG6q2nhurx1xKjhurwtw7PDgXh24bqgw6nDrXJ14bqg4bq8deG6uOG6uWnhu4Phu4fhurrhurzhurjhuqLhuqB2w61yw4HDs+G6uuG6uuG6q2lFUnXhuqDhurx14bq4aeG7g+G7h3jDgHbDrXLDgcOz4bq64bq64bqraXPhurx3w4rDgHHDrXhSdeG6oOG6vHXhurhpw63hurrhurxKw4F14bqraeG7iHhz4bq8d8Opw61s4buJw6xFxKjhurnDrXd1eHZ34bq8w6nDrWrhu4vEqUXEqOG6uWnDreG6uuG6uHLhuqtpLy944bq9ccOz4bqi4bq8d8Oz4bqgd3fhuqLDs+G6veG7iuG6oC/huqB14buI4bq6L+G7i2/hu4nhu4sv4buLbW5zbOG7i+G7i+G7i2vDrMSp4bq8bsOsbmvDgW8t4bq84bq4w4rDgEUt4buJ4bq94bu5RXZpw63Ds8OB4bq84bqraTNOw63DgeG7q8Ot4buC4bqgdsOtd+G6pMOtM+G6puG6oHbDreG6vHfhurThuqB2w609T8OtU+G6ouG6oMOzw4Fzw60z4bq4w4rDgEXDrXLDs+G6osOt4bqgd+G7neG6vMOt4bq84bq44bqi4bqgdsOt4buJw63huqDhu5HDgGnDrS/hu4Phu4cv4bq64bq84bq44bqi4bqgduG7g+G7hy9F4buD4buHRcOtcsOBw7PhurrhurrhuqtpRVLDs0Xhurx44bqi4bqgaeG7g+G7h8Ozw6134bq4deG7r+G6q2l34bq84bq8ReG6usOpLy/hu4jhu4jhu4jhur3hu4p4deG6vOG6oMOzw4BFw4HDiuG6uuG6veG7iuG6oC/hurzDs3bhurovM2N14buLY3FxY29r4bqgdi3hurx3Y3Xhu4tjcXFjb+G7i+G6oHYtPWN14buLY3FxY3Fv4bq94buK4bqgRWnhu4Phu4fhurrhurzhurjhuqLhuqB24buDM+G6puG6oHbDreG6vHfhurThuqB2w609T+G7hy/hurrhurzhurjhuqLhuqB24buD4buHL8Oz4buD4buHw7PDrXfhurh14buv4bqraXfhurzhurxF4bq6w6kvL+G7iOG7iOG7iOG6veG7inh14bq84bqgw7PDgEXDgcOK4bq64bq94buK4bqgL+G6vMOzduG6ui9T4bqi4bqgw7PDgXMtM+G6uMOKw4BF4bq94buK4bqgRWnhu4Phu4fhurrhurzhurjhuqLhuqB24buDU+G6ouG6oMOzw4Fzw60z4bq4w4rDgEXhu4cv4bq64bq84bq44bqi4bqgduG7g+G7hy/Ds+G7g+G6vcOt4bq/w5XhuqB3w6nDrTNX4bqxLzMz4bqxxIMk4buB4buHL0Xhu4Phu4dFw61yw4HDs+G6uuG6uuG6q2lFUeG6onNKaeG7gzN3deG6osOtQcaw4bq8w63DicOKw7XDreG6vHfhu5HDgMOtc8SC4bq7w61qbmPDreG6uuG6tMOt4bqgdkZCeMOtdEZDcsOtd+G6sHjDreG7guG6oHbDrXfhuqTDreG7injhu6tyw63DgeG7jcOAw61y4buCw7PDrTPhuqbhuqB2w63hurx34bq04bqgdsOtM+G6uMOKw4BF4bq7w63hurzhu5HhuqB2w63hurxIw61qa2PDreG6uuG6osOt4buK4bqqeMOtQcaw4bq8w63DicOKw7XDrXLDiuG6pHLDreG6vHfhu5HDgMOtc8SCw63hurx3w7LhuqB2w61Rw7PDreG7ikjDs8Otw4nDisOz4bq7w63hurzhurjhuqLhuqB2w61Bd3jDreG6vE7DrcOB4burw61Bd+G6suG6oHbDreG7guG6oHbDrXfhuqTDrcOB4buNw61r4buJY+G6veG7hy9F4buD4buHRcOtcsOBw7PhurrhurrhuqtpRVHhuqJzSmnhu4NSw4rhuqRyw63hurx34buRw4DDrXPEgsOtcuG7hOG6oHbDrXJ34bqiw63hurx34budSsOtw4BHcsOt4buC4bqgdsOtd+G6pMOtcsOz4bqiw61BTsOtw4Hhu4Zyw63hur9s4buJY+G7gcOtdOG6tHjDreG7iuG6qnjDrXLDsnJ3w63hurx4xrBFw61y4buf4bqgw61y4buCw7PDrTPhuqbhuqB2w63hurx34bq04bqgdsOtM+G6uMOKw4BFw63hu4rhu6nDreG7injhu6tyw63DgeG7jcOAw63hu4rhu43DrWtvY8OtdOG6tHjDreG7iuG6qnjDrXLDsnJ3w63hurx3R3LDreG6suG6oHbDrXR44bupw4rDrXfhu43huqB3w63huqDhu6nhuqDDrUF44bqgd8Ot4bq8xrDhur3hu4cvReG7g+G7h0XDrXLDgcOz4bq64bq64bqraUVR4bqic0pp4buDM+G6uOG6ouG6oHbDrUF3eMOtdMOD4bq7w63EqW9jw61yw43DreG6vOG6uHjDrXJ34bqiw63hurjhu5nhuqB2w6104bud4bq8w63huqBG4bqqcsOtdMOz4bqgdsOtdHjDrXThur7huqB2w613RuG6quG6oHbDreG7iuG7jcOta+G7i2PDrXJ34bqiw63hurjhu5nhuqB2w63huqDhu6nhuqDDrUF44bqgd8Ot4bq8xrDDrXTDs+G6oHbDrXR4w6104bq+4bqgdsOtd0bhuqrhuqB24bq9w61Sw4PDreG6vOG6qnjDrW3hu4tjw61yw43DreG6vOG6uHjDrXJ34bqiw63hurjhu5nhuqB2w63huqDhu6nhuqDDrUF44bqgd8Ot4bq8xrDDrXTDs+G6oHbDreG6uOG7neG6vMOtw4Dhu4/huqB3w6134bqi4buVcsOtcsODw61Fd+G7o+G6oMOtw4Dhu4/huqB34bq94buHL0Xhu4Phu4dFw61yw4HDs+G6uuG6uuG6q2lFUeG6onNKaeG7gzN3deG6osOt4bqy4bqgdsOtPcOz4bq4QcOtIHXhuqDhuqDhurvDrXTDguG6oHbDrXZ4w7LDgMOtdOG6tHLDrXLDiuG6pHLDreG6vHfhu5HDgMOtc8SCw63hurzhurjFqeG6oOG6u8Otw4nDisOz4bqgw610eOG7scOAw61y4buCw7PDreG6oHZGQnjDrXPhu5vhuqDDrT1Pw63hu4rhu6nDreG6oOG7qeG6oMOtQXjhuqB3w63hurzGsMOtdnjhur5Fw63DgeG7jcOAw63hurzhu5HhuqB2w63hurxOw63DgeG7q8Ot4buC4bqgdsOtd+G6pMOtdOG6tHjDreG7iuG6qnjDrTPhuqbhuqB2w63hurx34bq04bqgdsOtM+G6uMOKw4BF4bq94buHL0Xhu4Phu4dFw61yw4HDs+G6uuG6uuG6q2lFUeG6onNKaeG7gyR2RkJ4w61z4bub4bqgw609T8OtceG7jUrDreG6vOG6sMOtw4nDisOz4bqgw610eOG7scOAw63hurzhurjDiuG6oHbDrcOB4bufRcOtd+G6ouG7lXLDreG6vHlyd8Otcklyw6104bq0eMOt4buK4bqqeMOt4bqgd8OM4bqgdsOtd+G7jeG6oHfDrXThuqThuqB2w61y4buCw7PDreG6suG6oHbDrXJ34buCw60kd+G7jcOtM+G6uOG7k+G6oHbDreG7iuG7qcOtcsOycsOt4buK4bud4bqgw6104bupw63huqB3RsOtM+G6uMOK4bqgdsOtMMOK4bq0csOt4buK4buNw63huqB34bufRcOtckbhur3hu4cvReG7g+G7h0XDrXLDgcOz4bq64bq64bqraUVR4bqic0pp4buDLOG6oHbDrSB14bqg4bqgw61y4buE4bqgdsOt4bqgd+G7n+G6oMOtdOG7s+G6oHfDreG6uOG7meG6oHbhurvDrcOA4bqseMOtdHjhu7HDgMOt4bq84buR4bqgdsOt4bq84bq44bqi4bqgdsOtRXfhu4/DgMOt4buKeMOtamtjLWvDrGPDreG6uuG7p8OtcsO1eMOt4bq8d3jhu6vhuqDDrUF3w7XDreG6oOG7keG6oHbDreG6vMOyeMOtdOG7k3LDrXLDjcOtcuG7gsOzw60z4bqm4bqgdsOt4bq8d+G6tOG6oHbDrTPhurjDisOAReG6veG7hy9F4buD4buHRcOtcsOBw7PhurrhurrhuqtpRVHhuqJzSmnhu4MzTsOtw4Hhu6vDrXLDjcOt4bq84bq4eMOt4buC4bqgdsOtd+G6pMOtM+G6puG6oHbDreG6vHfhurThuqB2w60z4bq4w4rDgEXDreG6vOG6uOG6ouG6oHbDrXLDiuG6pHLDreG6vHfhu5HDgMOtc8SCw63huqDhu41Kw61yw7PhuqLDrXfhuqjhuqDDreG6oHd44bupw4rDreG6uuG6osOt4buK4bqqeMOtcsOycsOtcsOK4bqkcsOt4bq8d+G7kcOAw61zxILDreG6vOG6uEbhuqpyw6104bubSuG6u8Ot4buK4bq04bqgw63hurzhurjDiuG6oHbDrXHDveG6oHfDrXJ34bu1w6104buP4bq8w63hurxIw63EqW4tampj4bq94buHL0Xhu4Phu4dFw61yw4HDs+G6uuG6uuG6q2lFMuG6osOK4bq4cnVp4buDIyDDreG6vzN3deG6osOtMXXDiuG6vHXhurjhurrhu4Hhu4cvReG7gw==