[Video] Hướng dẫn quy trình tiếp nhận, giải quyết hồ sơ TTHC theo quy định tại Nghị định số 118 của Chính phủ
(Baothanhhoa.vn) - Để triển khai thực hiện có hiệu quả việc tiếp nhận, giải quyết TTHC theo quy định tại Nghị định số 118/2025/NĐ-CP ngày 9/6/2025 của Chính phủ về thực hiện thủ tục hành chính theo cơ chế một cửa, một cửa liên thông tại Bộ phận Một cửa và Cổng Dịch vụ công quốc gia, Trung tâm Phục vụ hành chính công tỉnh Thanh Hóa xây dựng video và tài liệu hướng dẫn cho tổ chức, công dân và cán bộ, công chức tham gia giải quyết thủ tục hành chính trên địa bàn tỉnh về quy trình hướng dẫn, tiếp nhận, giải quyết hồ sơ và trả kết quả cho tổ chức, cá nhân trên Cổng Dịch vụ công Quốc gia và Hệ thống thông tin giải quyết thủ tục hành chính của tỉnh.
w53huq0lPTnhurkow7PDs+G7pCNtw5LhuqnDsuG6ucOgI+G7suG7uOG7ouG6qWHDoMOqQD3huqzhu5nhu4nhur3huqc9YTfhur09buG7jXA9w7JvYuG6veG6rT3DsuG6qeG6sW094bq94bqtNeG6veG7rj3huqfhuql74bqpPW7hu41w4bqxw7I94bqtaD3Ds+G7iz3DksOS4bqs4bu5PcOy4bqtw6DDqj1u4buNcD3DoWPhur3huq09w7I+4bqpPeG6vOG6p+G6rWM9w6Fj4bq94bqtPcOzZz0lJS49OeG7kSg94bu54bqt4bqr4bq94bqtPW3huq3hu5HDnS/huq0l4buyw51tPTnhurkow7PDs+G7pCNt4bqsw6AoYSPhu7LDgeG6tT3Dsm/huqnhurXhur09w6nhuq0o4bqpPcOy4bqtxqE5PeG6reG6qeG6s+G6vT054bq/PeG6reG6qeG6s+G7jT1u4buNez3hu6PhuqnhurM5PcOy4bqp4bqxbT3hur3huq014bq94buuPeG6p+G6qXvhuqk9buG7jXDhurHDsj3DksOS4bqs4bu5PcOy4bqtw6DDqj1u4buNcD3DoWPhur3huq09w7I+4bqpPeG6vOG6p+G6rWM9w6Fj4bq94bqtPcOzZz0lJS4vKiQqOi/hurzDgS3hu7lNPeG6veG6pzxwPSEvOy8qJCo6PTnhu5EoPeG7ueG6reG6q+G6veG6rT1t4bqt4buRPeG7o+G6tz3DsuG6rcahOT3huq3huqnhurPhur09w7Lhuq3hu5E9w7LDtDk94bqtPOG6veG6rT054bqt4bqr4bq94bqtPcOy4bqtw6DDqj054buLPTnhuq3hurE94bq7acOyPTnhu5so4buuPeG6u2nDsj054bubKD3hurnhuqnhuq/hur09w7Lhuq1m4bq94bqnPcOyPuG6qT3hu7dpPW3huq014bq9PeG6umnDsj054bubKD3hu6M8PeG7ucOt4bq94bqnPUFjOeG6rT3hu6PDtD05ZuG6veG6pz1u4buNZzk94bqn4bqpKOG7rj3Dkm/hu43hur3huqc9w7Iy4bq7PU3huq3DtDk94bujw7Q94bqtPOG6veG6rT054bqt4bqr4bq94bqtPTlm4bq94bqnPcOyZOG6veG6rT3DkuG6rSjhur3huq094bqs4bq/KD3hu6EycD1hxqHhur3huqc94buj4bqpYcOgw6o94bujPD3Dsjzhuqk94bq54bqp4bqz4buNPeG6reG7meG7ieG6veG6pz1hN+G6vT054bqtw6o9w7LDrT054bqt4buVOeG7rj05ZuG6veG6pz1hMuG6vT3hu6M8PTkp4bq9PThp4buuPTlm4bq94bqnPTnhuq3hu5U5PcOy4bqtKOG6uz3huqfhuqkoPeG6p+G6qXvhuqk9buG7jXDhurHDsj3DsuG6reG7kT3DssO0OT3huq084bq94bqtPTnhuq3huqvhur3huq09w7Jv4bqv4bq9PcOhYyg9ODzhur09w7Jk4bq94bqtPeG7o+G6tz1u4buNcD3Dsm9i4bq94bqtPeG6reG7meG7ieG6veG6pz1hN+G6veG7rj3DsuG6qeG6sW094bq94bqtNeG6veG7rj3huqfhuql74bqpPW7hu41w4bqxw7I94bqtaD3Ds+G7iz3hu6M8PcOyb3s9w6nhurHDsj1u4buNez054bqtw6o9w7LDrT054bqt4buVOeG7rj05KT3hur3huq0y4bq9PcOyb+G6r+G6vT3hu7nDreG6veG6pz1BYznhuq094bujw7Q9OWbhur3huqc9TuG7jWc5PeG6p+G6qSg94bujPD3huqzhurM9w7Lhuq1n4bq94bqnPcOy4bqtZuG6veG6pz3DsuG6qeG6vT3huqfhuql74bqpPW7hu41w4bqxw7I9w7Lhuq3hu5E9w7LDtDk94bqtPOG6veG6rT054bqt4bqr4bq94bqtPTnhu5EoPcOyZOG6veG6rVbDnS9t4buyw51tPTnhurkow7PDs+G7pCNt4bu3w6phcCPhu7LDneG6qeG6u+G6pz054bq5KMOzw7Phu6QjYcOy4bqt4buN4bq7OD1h4bqt4bqpYcOgPeG6qeG7ucOg4bq9w7LDoG8jPcOzw7Jw4bq5w6Dhu6Qj4buf4bqpYcOy4bqt4buwPTsqOm3hu6Hhu6w94bqtw6Dhuqnhuqfhuq3DsuG7sD0mLipt4buh4busIz3Ds2854bukIy8v4bqpVjgow6rDsuG6rSjhur3huq3huq3DqihW4buj4bq9L+G6vcOg4bufw7MvKjoqPy8qJDphKiQhJiQmP8OyOioqIeG6uT8t4buN4bq9w7LhuqnDsuG6ucOgYVbhu5/DoDhtIz0o4bq5w7Lhu6Qj4bu44bui4bqpYcOgw6pAPeG6rOG7meG7ieG6veG6pz1hN+G6vT1u4buNcD3Dsm9i4bq94bqtPcOy4bqp4bqxbT3hur3huq014bq94buuPeG6p+G6qXvhuqk9buG7jXDhurHDsj3huq1oPcOz4buLPcOSw5Lhuqzhu7k9w7Lhuq3DoMOqPW7hu41wPcOhY+G6veG6rT3Dsj7huqk94bq84bqn4bqtYz3DoWPhur3huq09w7NnPSUlLj054buRKD3hu7nhuq3huqvhur3huq09beG6reG7kSM94buf4bqpYcOy4bqt4bukIzsqOiM94bqtw6Dhuqnhuqfhuq3DsuG7pCMmLiojPS/hu7LDnS9t4buyw51tPTnhurkow7PDs+G7pCNt4bu3w6phcCPhu7LDneG6qeG6u+G6pz054bq5KMOzw7Phu6Qj4bq7OcOgLcOqOGXDoDnDsj1h4bqn4bq7w6Bh4bqpKD3hu6Phuqlhw6DDqj3hurttPz3huqnhu7nDoOG6vcOyw6BvIz3Ds8OycOG6ucOg4bukI+G7n+G6qWHDsuG6reG7sD0lJCTFqOG7rD3huq3DoOG6qeG6p+G6rcOy4buwPSYqJG3hu6Hhu6wjPcOzbznhu6QjLyhtbcOzL8OqbcOg4bq9L+G6u8OgYeG6qSgvw7Lhuq3hu43hurs44buqbeG7pOG6vcOg4bufw7MvKjoqPy8qJDphKiQhKiUqLMOyLjshJeG6uSRWZW3huqcjPWEow7IoLcOycG3DoOG7pCPhu6Phuqlhw6DDqi/hurttPyM9YSjDsigtw6Dhur05w6phw6Dhu6Qjw6kkw4rDij9P4bu3QeG7jOG6pUHhu7cqJW7DquG6puG7ocOzbSXhu5/DunDhuqnhu59Fw7pwxagq4bu3cC9Q4buh4bui4bqnJS/hu6JNUE46w7LDuuG6vcO64bq8O8O6LDt6IVA64bqpw6pO4bqpw5Phu5/Dk1AsOuG6p+G6pMOp4buN4bq64bq4YWXDgOG7oz8/4bu34bqmYeG6veG6vcOq4bqnYSjhu4zDqcOJ4bq44bu5w7PDkuG7ueG6vXDhu43hu7fhuq3DquG6uzovw4nDujk64bqm4bq64bq5UOG6qeG6ucOzcFDhu7c4RWXDgE4h4bqnIeG7n+G6p+G6rcOq4bq84bqpIUHhu6PDoMOyw5Imw5M/w7Lhuqw/TcOyw6nDiU7huqfFqCZBxagmQSM9YSjDsigtw7LhuqnDsuG6ucOg4bukIyM9YSjDsigtKG/huqfDs+G7pCM7JOG7sCThu7AlOyHhu7Ak4buwJeG7sCXhu7AlJCTFqOG7sCThu7AmKiThu7AmKiQjPS/hu7LDnS9t4buyw51tPTnhurkow7PDs+G7pCNt4bu3w6phcCM9w7PDsnDhurnDoOG7pCPDssOg4buhw7ItKOG6ueG6qeG6p+G6veG7sD05w6Dhur3DssOgb+G7rCPhu7LDncOzw7Jvw6rhur3huqfhu7Lhu6Lhuqlhw6DDqj3huq3hu5nhu4nhur3huqc9YTfhur09OSnhur09OGk9w7LhuqnhurFtPeG6veG6rTXhur094bujPD3hu6Hhu5s94bq5cT3huq1oPcOz4buLPcOyb+G6r+G6vT3huq3hurM9w7Lhuq1n4bq94bqnPcOy4bqtZuG6veG6pz3DsuG6qeG6vT3huqfhuql74bqpPW7hu41w4bqxw7I9w5LDkuG6rOG7uT3DsmThur3huq09w5Lhuq0o4bq94bqtPeG6rOG6vyhWw50vw7PDsm/DquG6veG6p+G7ssOdL23hu7LDnW09OeG6uSjDs8Oz4bukI23hu7fDqmFwIz3Ds8OycOG6ucOg4bukI8Oyw6Dhu6HDsi0o4bq54bqp4bqn4bq94buwPTnDoOG6vcOyw6Bv4busI+G7ssOd4bqp4bq74bqnPTnhurkow7PDs+G7pCPhurs5w6Atw6o4ZcOgOcOyPWHhuqfhurvDoGHhuqkoPeG7o+G6qWHDoMOqPeG6u20/PeG6qeG7ucOg4bq9w7LDoG8jPcOzw7Jw4bq5w6Dhu6Qj4buf4bqpYcOy4bqt4buwPSUkJMWo4busPeG6rcOg4bqp4bqn4bqtw7Lhu7A9JiokbeG7oeG7rCM9w7NvOeG7pCMvKG1tw7Mvw6ptw6Dhur0v4bq7w6Bh4bqpKC/DsuG6reG7jeG6uzjhu6pt4buk4bq9w6Dhu5/Dsy8qOio/LyokOmEqJCEqKiUsw7IqLCom4bq5JVZlbeG6pyM9YSjDsigtw7JwbcOg4bukI+G7o+G6qWHDoMOqL+G6u20/Iz1hKMOyKC3DoOG6vTnDqmHDoOG7pCPDqSTDisOKP0/hu7dB4buM4bqlQeG7tyolbsOq4bqm4buhw7NtJeG7n+G6uuG6pGFFTeG6qSQqb1BPZSROO8OSbsOp4buiOiwqxagq4bu3OsOgYeG6uyHDkyp6w6nDunplJCrhu7dv4bug4buNbmEubiVO4bqp4bufWuG6pi5h4bqtbiHhur1ubcO6biXhu6Hhu6IoJjnhu57hu6Dhu7kkTuG6rSHhu5564bqnQTrDuk45xagq4bu34bujJDrhuqbhurrhurlQ4bqp4bq5w7NwUOG7tzhFZcOATiHhuqch4buf4bqn4bqtw6rhurzhuqkhQeG7o8Ogw7LDkibDkz/DsuG6rD9Nw7LDqcOJTuG6p8WoJkHFqCZBIz1hKMOyKC3DsuG6qcOy4bq5w6Dhu6QjIz1hKMOyKC0ob+G6p8Oz4bukIzsk4buwJOG7sCU7IeG7sCThu7Al4buwJeG7sCUkJMWo4buwJOG7sCYqJOG7sCYqJCM9L+G7ssOdL23hu7LDnW09OeG6uSjDs8Oz4bukI23hu7fDqmFwIz3Ds8OycOG6ucOg4bukI8Oyw6Dhu6HDsi0o4bq54bqp4bqn4bq94buwPTnDoOG6vcOyw6Bv4busI+G7ssOdw7PDsm/DquG6veG6p+G7suG7ouG6qWHDoMOqPeG6reG7meG7ieG6veG6pz1hN+G6vT3DssOtPTnhuq3hu5U54buuPTlm4bq94bqnPWEy4bq9PeG6vWltPeG6rWg9w7Phu4s9YWM54bqtPeG7o8O0PTlm4bq94bqnPcOyb8ahOT3DsuG7jXDhurHhur09w7Jv4bqv4bq9PeG7ucOt4bq94bqnPWFjOeG6rT05ZuG6veG6pz1O4buNZzk94bqn4bqpKFbDnS/Ds8Oyb8Oq4bq94bqn4buyw50vbeG7ssOdbT054bq5KMOzw7Phu6QjbeG7t8OqYXAj4buy4bugw6Dhurs9w7I84bqpPeG6ueG6qeG6s+G7jT3huq3hu5nhu4nhur3huqc9YTfhur09w7Phu5s9YcO04bq94bqnPThpPeG6veG6rTXhur09YeG6qeG6s+G6vT3hu7dpPW3huq014bq9PeG6umnDsj054bubKD05KTk9OTNtPeG7ozw94bqt4bqzPcOy4bqtZ+G6veG6pz3DsuG6rWbhur3huqc9w7Lhuqnhur094bqn4bqpe+G6qT1u4buNcOG6scOyPcOy4bqt4buRPcOyw7Q5PeG6rTzhur3huq09OeG6reG6q+G6veG6rT05M209OGnhu649OTNtPcOyZOG6veG6rT3DnSg9w7LhuqnDsuG6ucOg4bukI8OyPuG6qT3DoTJwViM94bqtb8Og4bql4bukIy8v4bqpVjgow6rDsuG6rSjhur3huq3huq3DqihW4buj4bq9L+G6vcOg4bufw7MvKjoqPy8qJDphKiQhPz8qJcOyLCY7JuG6uSYtKiYlIS3hu6NtOW0tw6nDs8Oyw7ItJT8kPypWbWHhuqUjPcOyKG/huqfDoMOy4bukI1844bq5KOG6vcOpIz1vw6Dhurnhu6Qj4bq9w6rDqm3DoOG6vcOgbyPhu7LDsj7huqk9w6EycFbDnS8o4buyw50vbeG7ssOdbT054bq5KMOzw7Phu6QjbeG7t8OqYXAj4buy4bugw6Dhurs9w7I84bqpPeG6ueG6qeG6s+G7jT3huq3hu5nhu4nhur3huqc9YTfhur09w7LhuqnhurFtPeG6veG6rTXhur3hu6494bqn4bqpe+G6qT1u4buNcOG6scOyPeG6rWg9w7Phu4s94bujPD3Dsm97PcOp4bqxw7I9buG7jXs9OeG6rcOqPcOyw609OeG6reG7lTnhu649OSk94bq94bqtMuG6vT3Dsm/huq/hur094bu5w63hur3huqc9YWM54bqtPeG7o8O0PTlm4bq94bqnPU7hu41nOT3huqfhuqkoPeG7ozw94bqs4bqzPcOy4bqtZ+G6veG6pz3DsuG6rWbhur3huqc9w7Lhuqnhur094bqn4bqpe+G6qT1u4buNcOG6scOyPcOy4bqt4buRPcOyw7Q5PeG6rTzhur3huq09OeG6reG6q+G6veG6rT054buRKD3DsmThur3huq09w50oPcOy4bqpw7LhurnDoOG7pCPDsj7huqk9w6EycFYjPeG6rW/DoOG6peG7pCMvL+G6qVY4KMOqw7Lhuq0o4bq94bqt4bqtw6ooVuG7o+G6vS/hur3DoOG7n8OzLyo6Kj8vKiQ6YSokIT86Pz/Dsjo/JSThurkuLcOyKOG6qS3hurnhuqnDoOG7jS3DsihtLeG6reG7jSjhur0tJVZtYeG6pSM9w7Iob+G6p8Ogw7Lhu6QjXzjhurko4bq9w6kjPW/DoOG6ueG7pCPhur3DqsOqbcOg4bq9w6BvI+G7ssOyPuG6qT3DoTJwVsOdLyjhu7LDnS9t4buyw51tPTnhurkow7PDs+G7pCNtw7rhu43DsuG6rcOqbyM9w7PDsnDhurnDoOG7pCPDssOg4buhw7ItKOG6ueG6qeG6p+G6veG7sD1v4bqp4bqn4bqtw7Lhu6wj4buyw53Ds8Oyb8Oq4bq94bqn4buy4bq8QcOTw50vw7PDsm/DquG6veG6p+G7ssOdL23hu7I=
NDS